
AFRL-OSR-VA-TR-2014-0194

AN INTEGRATED ARCHITECTURE FOR AUTOMATIC INDICATION, AVOIDANCE

Dongyan Xu
PURDUE UNIVERSITY

Final Report
08/20/2014

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTC
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

 06/08/2014

2. REPORT TYPE

 Final Performance Report

3. DATES COVERED (From - To)

 4/1/2010 – 3/31/2014

4. TITLE AND SUBTITLE

An Integrated Architecture for Automatic Indication, Avoidance

of

 and Profiling of Kernel

Rootkit Attacks

5a. CONTRACT NUMBER

and Profiling of Kernel Rootkit Attacks

5b. GRANT NUMBER

FA9550-10-1-0099

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Xu, Dongyan

Spafford, Eugene H.

Xuxian Jiang (North Carolina State University)

5e. TASK NUMBER

Jiang, Xuxian

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Purdue University,

401 S. Grant St., West Lafayette, IN 47907

AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

401 S. Grant St., W. Lafayette, IN 47907

North Carolina State University,

890 Oval Dr., Raleigh, NC 27695

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Air Force Office of Scientific Re Research AFOSR

875 N. Randolph St., RM3112

RRM3112

Arlington, VA 22203 11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The objective of this project is to mitigate or eliminate threats of kernel rootkits against

production computer systems. The main goal of this research is the development of an

integrated, virtualization-based architecture for automatic indication, avoidance and

profiling of kernel rootkit attacks while maintaining non-stop production system operation.

Under this architecture, a production system (running as a virtual machine or VM) executes at

full speed under normal circumstances, while the proposed architecture watches out for the

first sign of a kernel rootkit attack and indicates the attack right before it strikes. In

response, the production VM “splits” into two copies: one is the same production VM running

uninterrupted and without the negative impact of the rootkit; while the other one is a live

profiling VM which will generate a multi-aspect profile of the kernel rootkit. Moreover, the

profile will guide the generation of a variety of kernel attack defense techniques, which

will be applied back to the production system and shield it from future rootkit attacks.

15. SUBJECT TERMS

Operating System Security, Virtualization Technology, Malware Defense

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Dongyan Xu

a. REPORT

b. ABSTRACT

c. THIS PAGE

 16

19b. TELEPHONE NUMBER (include area

code)

765-494-6182

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

AFOSR Final Performance Report

Project Title: An Integrated Architecture for Automatic Indication, Avoidance, and

Profiling of Kernel Rootkit Attacks

Award Number: FA9550-10-1-0099

Duration: April 1, 2010 – March 31, 2014

Program Manager: Dr. Robert Herklotz

Information Operations and Security

Air Force Office of Scientific Research

875 N. Randolph Street

Arlington, VA 22203

Phone: (703) 696-6565

PI: Prof. Dongyan Xu

 Department of Computer Science and CERIAS

 Purdue University

 West Lafayette, IN 47907

 Phone: (765) 494-6182

Email: dxu@purdue.edu

Co-PI: Prof. Eugene H. Spafford

 Department of Computer Science and CERIAS

 Purdue University

 West Lafayette, IN 47907

 Phone: (765) 494-7825

Email: spaf@purdue.edu

Subcontract PI: Prof. Xuxian Jiang

 Department of Computer Science

 North Carolina State University

 Raleigh, NC 27695

 Phone: (919) 513-7835

 Email: jiang@cs.ncsu.edu

mailto:dxu@purdue.edu
mailto:spaf@purdue.edu
mailto:jiang@cs.ncsu.edu

1. Project Summary

Objective The objective of this project is to mitigate or eliminate threats of kernel rootkits

against production computer systems. As one of the most elusive types of malware, kernel

rootkits are designed to stealthily subvert the operating system kernel – the software root of trust

of a computer system. With their omnipotence inside the compromised systems, kernel rootkits

have increasingly been used to assist attackers in a variety of malicious activities, such as

opening system backdoors, stealing private data, escalating attacker process privileges, and

tampering with anti-malware facilities. Unfortunately, the state-of-the-art in kernel rootkit

defense is mainly reactive and is in a fundamentally disadvantageous position relative to the

kernel attacks. The three main research tasks proposed in this project aim to make a difference

by grabbing the “upper hand” in the arms race against kernel rootkits.

Approach The cornerstone of this research is the development of an integrated, virtualization-

based architecture for automatic indication, avoidance and profiling of kernel rootkit attacks

while maintaining non-stop production system operation. Under this architecture, a production

system (running as a virtual machine or VM) executes at full speed under normal circumstances,

while the proposed architecture watches out for the first sign of a kernel rootkit attack and

indicates the attack right before it strikes. In response, the production VM “splits” into two

copies: one is the same production VM running uninterrupted and without the negative impact of

the rootkit; while the other one is a live profiling VM which will generate a multi-aspect profile

of the kernel rootkit. Moreover, the profile will guide the generation of a variety of kernel attack

defense techniques, which will be applied back to the production system and shield it from future

rootkit attacks.

2. Accomplishments

The major accomplishments of this project are highlighted as follows.

 This research has resulted in a number of new scientific concepts and results in kernel

malware detection, prevention, and profiling (details in Section 3). The research efforts

have helped establish kernel malware defense as a major area in computer systems

security research. The techniques produced by this research, such as kernel memory

shadowing, kernel data mapping and access profiling, process implanting, and process

out-grafting are frequently cited by subsequent literatures.

 In addition to scientific concepts and results, this research has generated a number of

open-source software prototypes (e.g., NICKLE-KVM, DataGene, Timescope, Process

Implanting, Process Out-grafting, and FACE-CHANGE). They are available for

distribution to researchers and developers. In particular, NICKLE-KVM and DataGene

were adopted as the basis for developing a kernel-level intrusion detection system, which

was part of an Army CERDEC-funded project “Host-Centric Intrusion Detection and

Reaction” (Contract W15P7T-11-C-A021, 06/2011-05/2013, Main performer: Applied

Communication Sciences). Process Implanting and FACE-CHANGE have been

transferred (as potential code base) to Intelligent Automation, Inc. for an upcoming

AFRL-funded project “Versatile Live Patching System”.

 This research has involved a number of graduate students, who obtained valuable

scientific training and hands-on experience in kernel malware defense and virtualization

technology. In particular, five students have earned their PhD degrees and started

pursuing their research careers in academia and industry: Dr. Dannie Stanley (PhD 2013,

assistant professor at Taylor University), Dr. Zhi Wang (PhD 2012, assistant professor at

Florida State University), Dr. Deepa Srinivasan (PhD 2012, senior software engineer at

Microsoft), Dr. Zhiqiang Lin (PhD 2011, assistant professor at University of Texas at

Dallas and 2014 AFOSR Young Investigator), and Dr. Junghwan Rhee (PhD 2011,

researcher at NEC Labs America).

3. Research Activities and New Findings

The following subsections will present more technical details about the major research activities

and their scientific findings in this project. Many of these results have been published in peer-

reviewed conferences and journal. A complete listing of publications can be found in Section 4.

3.1 Kernel Rootkit Prevention with Performance Optimization

The first task of this research is to explore advanced kernel rootkit prevention/avoidance

techniques that are more efficient and effective than the state of the art, including the PIs’ earlier

work called NICKLE. Solutions like NICKLE have been created to prevent kernel rootkits by

relocating the vulnerable physical system to a guest VM and enforcing a W⊕KX memory access

control policy from the host virtual machine monitor (VMM or hypervisor). The W⊕KX

memory access control policy guarantees that no region of guest memory is both writable and

kernel-executable.

In this research, it is observed that the guest system must have a way to bypass the W⊕KX

restriction to load valid kernel code, such as kernel drivers, into memory. To distinguish between

valid kernel code and malicious kernel rootkit code, NICKLE and others use cryptographic

hashes for verification. Offline, a cryptographic hash is calculated for each piece of valid code

that may get loaded into the guest kernel. Online, the VMM intercepts each guest attempt to load

new kernel code and calculates a hash for the code. If the online hash matches an offline hash,

the load is allowed.

It is also observed that some modern kernels however, are “self-patching;” they may patch kernel

code at run-time. If the patch is applied prior to hash verification, then the hashes will not match.

If the patch is applied after hash verification, then the memory will be read-only, due to W⊕KX

enforcement, and the patch will fail. Such run-time patching may occur for a variety of reason

including: CPU optimizations, multiprocessor compatibility adjustments, and advanced

debugging. The previous hash verification procedure (including that introduced by NICKLE)

cannot handle such modifications.

Figure 1: Runtime (left) and load time (right) verification of self-patching guest kernel code

To address these challenges, efforts in this project have resulted in a new system that verifies the

integrity of each instruction introduced by a self-patching kernel. Each instruction is verified by

comparing it to a whitelist of valid instruction patches (Figure 1). The whitelist is generated

ahead of time while the guest is offline. When online, certain predetermined guest events like

write-faults and code loading, will trigger a trap into the host and give the system the opportunity

to verify new instructions.

The new system is guest-transparent; no modifications to the guest operating system are required.

However, the whitelist construction is dependent on the guest kernel. Each guest kernel may

patch itself in different ways. Correspondingly, the whitelist creation procedure requires deep

knowledge of the guest kernel to collect all of the possible valid patches. It has been discovered

that the Linux kernel has at least five different facilities that influence code modification, with

details presented in [1].

3.2 Kernel Memory Mapping for Rootkit Profiling
The second task of this research is to develop advanced methods and techniques for profiling the

behaviors of kernel rootkits. Experience in this research indicates that a major challenge in

kernel rootkit profiling is to accurately and completely identify kernel objects that are

dynamically created and destructed in kernel memory. In fact, dynamic kernel memory has been

a popular target of recent kernel malware due to the difficulty of determining the status of

volatile dynamic kernel objects. Some existing approaches use kernel memory mapping to

identify dynamic kernel objects and check kernel integrity. The snapshot-based memory maps

generated by these approaches are based on the kernel memory which may have been

manipulated by kernel malware. In addition, because the snapshot only reflects the memory

status at a single time instance, its usage is limited in temporal kernel execution analysis.

In this research, a new runtime kernel memory mapping scheme called allocation-driven

mapping is introduced, which systematically identifies dynamic kernel objects, including their

types and lifetimes. The scheme works by capturing kernel object allocation and de-allocation

events. The system provides a number of unique benefits to kernel malware profiling: (1) an un-

tampered view wherein the mapping of kernel data is unaffected by the manipulation of kernel

memory and (2) a temporal view of kernel objects to be used in temporal analysis of kernel

execution. The effectiveness of allocation-driven mapping is demonstrated in two usage

scenarios. First, a hidden kernel object detector can be built that uses an un-tampered view to

detect the data hiding attacks of 10 kernel rootkits that directly manipulate kernel objects

(DKOM). Second, a temporal rootkit behavior monitor is developed that tracks and visualizes

rootkit behavior triggered by the manipulation of dynamic kernel objects. Allocation-driven

mapping enables a reliable analysis of such behavior by guiding the inspection only to the events

relevant to the attack.

Figure 2: Illustration of adore-ng rootkit KOH behavior (left: before hijacking; right: after

hijacking)

The adore-ng attack hijacks kernel code execution by modifying a function pointer and this

attack is referred to as Kernel Object Hooking (KOH). This behavior is observed when the

influence of a manipulated function pointer is inspected. The system generates two kernel control

flow graphs at these samples, each for a period of 4000 instructions. Figure 2 presents how this

manipulated function pointer affects runtime kernel behavior. The Y axis presents kernel code;

thus, the fluctuating graphs show various code executed at the corresponding time of X axis. A

hook-invoking function (proc_file_read) reads the function pointer and calls the hook code

pointed to by it. Before the rootkit attack, the control flow jumps to a legitimate kernel function

tcp_get_info which calls sprint after that as shown in Figure 2 (left). However, after the hook is

hijacked, the control flow is redirected to the rootkit code which calls kmalloc to allocate its own

memory, then comes back to the original function (Figure 2 – right).

3.3 Kernel Data Access Behavior Profiling
Based on the kernel memory mapping method presented in Section 3.2, more advanced kernel

rootkit behavior models can be defined, which can lead to generic, high-accuracy behavior

rootkit signatures. Characterizing malware behavior using its control flow faces several

challenges, such as obfuscations in static analysis and the behavior variations in dynamic

analysis. This research introduces a new approach to characterizing kernel malware’s behavior

by using kernel data access patterns unique to the malware. The approach neither uses malware’s

control flow consisting of temporal ordering of malware code execution, nor the code-specific

information about the malware. Thus, the malware signature based on such data access patterns

is resilient in matching malware variants.

To evaluate the effectiveness of this approach, the signatures of three classic rootkits are first

generated using their data access patterns, and then matched them with a group of kernel

execution instances which are benign or compromised by 16 kernel rootkits. The malware

signatures did not trigger any false positives in benign kernel runs; however, kernel runs

compromised by 16 rootkits were detected due to the data access patterns shared with the

compared signature(s). It is further observed that similar data access patterns in the signatures of

the tested rootkits and exposed popular rootkit attack operations by ranking common data

behavior across rootkits. Experiments show that this new approach is effective not only to detect

the malware whose signature is available, but also to determine its variants which share kernel

data access patterns.

Figure 3: Similarity of data access behavior across rootkits

The similarities of data behavior across rootkits are visualized in Figure 3. A node represents a

rootkit signature and an arrow shows the similarity between two signatures using three different

arrow types. An arrow from a node M1 to a node M2 means that the signature M1 can be used to

determine the rootkit of the signature M2. This figure illustrates that several groups of rootkits

have strong similarities. The family of adore rootkits (i.e., adore 0.38, adore 0.53, and adore-ng

1.56) are strongly related in general. The adore-ng 1.56 is connected to other versions with less

strong connections, thick dashed arrows, because in newer adore versions (bigger than 1.0 whose

name is changed to adore-ng), the internal attack vector is substantially changed to use dynamic

objects instead of static objects. A group of rootkits using the /dev/kmem memory device (i.e.,

SucKIT, hide_lkm, fuuld, and superkit) have a strong relationship to one another. The SucKIT

and the superkit are especially connected by using thick solid arrows because they share a

majority of data behavior. Some rootkits have relationships with different kinds of rootkits. For

example, the kis rootkit is connected to driver-based rootkits such as the adore rootkits and the

knark rootkit; but, it is also closely related to /dev/kmem based rootkits such as the SucKIT.

As seen in Figure 3, data access behaviors are not only common in the family of rootkits or

similar kinds, but also are present across different kinds of rootkits. The signatures of these

related rootkits can be interchangeably used to detect one another.

3.4 Virtualization-based Attack Replay

The kernel malware profiling techniques can be further enhanced to support live kernel rootkit

monitoring and forensics, especially in the virtual honeypot record and replay (R&R) scenarios.

To “rewind” a honeypot’s execution, an intuitive network-level approach would be to replay the

captured network traffic targeting the honeypot system (since the honeypot is remotely

compromised). However, due to inherent sources of non-determinism in modern systems and

software, by simply replaying the captured network packets, it may not be possible to obtain the

same execution of the honeypot system. From another perspective, a number of system-level

deterministic R&R approaches have been proposed for a variety of purposes, including fault

tolerance, application debugging and security analysis. Recording and replaying a VM is well-

suited for honeypots since it can capture and reproduce the entire system’s execution. However,

most prior VM R&R systems are not suitable for high-interaction honeypots because either they

do not support commodity OSes or require extensive OS-level customization, or they heavily

rely on proprietary virtual machine monitors (VMMs). Moreover, there is a lack of honeypot-

specific forensic analysis modules that can take advantage of VM R&R capability.

Figure 4: Log excerpt for live forensic analysis of SuKIT rootkit using Timescope

In this research, a VM R&R system called Timescope is developed. Timescope is a time-

traveling high-interaction honeypot system designed for extensible, fine-grained forensic

analysis. Leveraging previous insights from VM-level R&R systems, an open-source tool is

developed, aiming to engage the security community and benefit related research efforts that

may require similar features. In addition, the system is extended by developing a number of

honeypot-specific analysis modules: contamination graph generator (I), transient evidence

recoverer (II), shellcode extractor (II), and break-in reconstructor (IV). These modules are

applied only during honeypot execution replay sessions and placed externally so that the replay

itself is not perturbed. By allowing the analysis modules to “travel back in time”, it addresses key

questions in honeypot forensic investigations, such as: “what are the contaminations or damages

caused by an intrusion?”; “what intermediate evidence (e.g., files and directories), if any, has

been erased by the attacker?”; “how is the attack launched?”

Timescope and these analysis modules have been implemented based on the open-source QEMU

VMM and enabled multi-faceted, inter-related malware forensic analysis during multiple replay

sessions. Evaluation with a number of attack scenarios, including real-world worm programs and

kernel rootkits, shows the practicality and effectiveness of Timescope to repeatedly and

comprehensively analyze past intrusions. The experiments are enabled by repeatedly rewinding

the honeypot’s execution, not based on the log from one single run.

In one of the experiments, the goal is to demonstrate how Timescope’s replay-based forensic

analysis techniques can be used to analyze intermediate memory states in the honeypot. For this,

the SucKIT kernel rootkit is launched to attack a honeypot VM. To analyze this attack, a replay

session is run with the first analysis module and the root login and subsequent commands

executed (with the sys_execve() system call) are observed. A subset of the log is shown in Figure

4. In particular, the command “install” is run by the attacker and it opens the file /dev/kmem

which, gives complete write access to the root user to write to arbitrary locations in the kernel

memory. To highlight a subset of the execution profiling analysis, consider the lines indicating

that the kernel memory is being overwritten as shown in Figure 4. These lines indicate kernel

memory being overwritten from the ranges 0xc7024400 to 0xc70261cb. One interesting

observation from Figure 4 is that the “install” user process is issuing a sys_oldolduname() system

call, when in reality, the rootkit overwrote the address of this system call handler in the kernel

multiple times to use it for allocating kernel memory, injecting rootkit code in the kernel space,

and hijacking kernel control flow.

3.5 Process Implanting for Agile Assured Execution

This research has also led to two interesting (and novel) capabilities for agile and assured process

execution in VMs: process implanting and process out-grafting. This section describes process

implanting and the next section will present process out-grafting.

To motivate process implanting, it has been known that many security tools for malware

detection are vulnerable to attacks because they are exposed to malwares. The most common

technique used by a malware to hide itself is to dysfunction anti-malware engines. In order to be

tamper-resistant and stealthy, current approaches leveraging virtualization technology to detect

and prevent malware attacks usually try to move the monitoring tools from the untrusted guest

VM to underlying hypervisor or to another isolated trusted VM to prevent the tools from being

tampered with. By reconstructing the semantic view of guest VM from host through the

technique of virtual machine introspection, a large (yet incomplete) amount of semantic

information can be obtained. The semantic gap between the guest OS and host is a known barrier

to services operating below the abstractions of guest OS and applications. This problem becomes

more challenging with the widely deployment of hardware virtualization, whose goal is to run

most of the native instructions directly on the CPU and expose as few details as possible to the

VMM to gain higher performance. Previous approaches to virtual machine introspection can

passively detect or actively monitor attacks with effectiveness. Yet it is desirable to act even

more actively in the counterattacks by obstructing, analyzing and subverting the malware attacks.

This requires a more complete, native semantic view of the guest VM.

Figure 5: Overview of process implanting

This research has resulted in process implanting, a general-purpose active VM introspection

framework. The idea is to implant a process directly from the host into the guest under the cover

of an existing process inside the guest OS to narrow the semantic gap and gain in-context

knowledge of the running VM. Instead of leaving the implanted process alone inside the guest

VM, a series of coordination and protection mechanisms are designed. They are supported by the

higher privileged hypervisor to exempt the implanted process from malware’s tampering and

leave minimum negative impact on the normal execution of guest OS and applications after it

exits.

Figure 6: Log excerpt from process implanting-enabled library call introspection

In one of the experiments, the ltrace tool is implanted to trace the ls utility which had been

infected by caline. Caline is an ELF infector using S.P.I (segment padding infection) technique.

It inserts virus code after the code segment of an ELF binary to change its behavior. Through

tracing the infected ls, it becomes easy to identify the deviated execution path by checking the

arguments of library calls. The box in Figure 6 presents the suspicious execution results.

3.6 Process Out-grafting for Agile Assured Execution

As a counter-part of process implanting (Section 3.5), process out-grafting is an architectural

approach that addresses both isolation and compatibility challenges for out-of-VM, fine-grained

user-mode process execution monitoring. Similar to prior out-of-VM approaches, out-grafting

still confines vulnerable systems as VMs and deploys security tools outside the VMs. However,

instead of analyzing the entire VM on all running processes, out-grafting focuses on each

individual process for fine-grained execution monitoring. More importantly, this approach is

designed to naturally support existing user-mode process monitoring tools (e.g., strace, ltrace,

and gdb) outside of monitored VMs on an internal suspect process, without the need of

modifying these tools or making them introspection-aware (as required in prior out-of-VM

approaches). For simplicity, the terms “production VM” and “security VM” are used respectively

to represent the vulnerable VM that contains a suspect process and the analysis VM that hosts the

security tool to monitor the suspect process.

To enable process out-grafting, two key techniques are developed (shown in Figure 7).

Specifically, the first technique, on-demand grafting, relocates the suspect process on demand

from the production VM to security VM (that contains the process monitoring tool as well as its

supporting environment). By doing so, grafting effectively brings the suspect process to the

monitor for fine-grained monitoring, which leads to at least two important benefits: (1) By co-

locating the suspect process to run side-by-side with the monitor, the semantic gap caused by the

VM isolation is effectively removed. In fact, from the monitor’s perspective, it runs together

with the suspect process inside the same system and based on its design can naturally monitor the

suspect process without any modification. (2) In addition, the monitor can directly intercept or

analyze the process execution even at the granularity of user-level function calls, without

requiring hypervisor intervention, which has significant performance gains from existing

introspection-based approaches.

Figure 7: Overview of process out-grafting

To effectively confine the (relocated) suspect process, the second technique enforces a mode-

sensitive split execution of the process, thus the name split execution. Specifically, only the user-

mode instructions of the suspect process, the main focus for fine-grained monitoring, will be

allowed to execute in the security VM; all kernel-mode execution that requires the use of OS

kernel system services is forwarded back to the production VM. By doing so, the system can not

only maintain a smooth continued execution of the suspect process after relocation, but ensure its

isolation from the monitoring tools. Particularly, from the suspect process’ perspective, it is still

logically running inside the production VM. In the meantime, as the suspect process physically

runs inside the security VM, the monitoring overhead will not be inflicted to the production VM,

thus effectively localizing monitoring impact within the security VM.

A proof-of-concept prototype has been implemented on KVM/ Linux (version kvm-2.6.36.1) and

tested to out-graft various processes from different VMs running either Fedora 10 or Ubuntu

9.04. It has been evaluated with a number of different scenarios, including the use of traditional

process monitoring tools, i.e., strace/ltrace/gdb, to monitor an out-grafted process from another

VM. Note that these fine-grained process monitoring tools cannot be natively supported if the

semantic gap is not effectively removed. Moreover, it is also shown that advanced (hardware-

assisted) monitoring tools can be deployed in the security VM to monitor a process in the

production VM, while they may be inconvenient or even impossible to run inside the production

VM. The performance evaluation with a number of standard benchmark programs shows that the

process out-grafting prototype incurs a small performance overhead and the monitoring overhead

is largely confined within the security VM, not the production VM.

In one of the experiments, process out-grafting is applied to fight malware obfuscation. Most

recent malware apply obfuscation techniques to evade existing malware detection tools. Code

packing is one of the popular obfuscation techniques. To detect packed code, efficient behavioral

monitoring techniques such as OmniUnpack have been developed to perform real-time

monitoring of a process’ behavior by tracking the pages it writes to and then executes from.

When the process invokes a “dangerous” system call, OmniUnpack looks up its page list to

determine whether any previously written page has been executed from. If so, this indicates

packing behavior, at which point a signature-based anti-virus tool can be invoked to check the

process’ memory for known malware.

In the experiment, a freely available UPX packer is used to pack the Kaiten bot binary. A

security-sensitive event trigger is also utilized to initiate process out-grafting when a suspect

process invokes the sys_execve system call. The trigger is placed such that just before the system

call returns to user-mode (to execute the first instruction of the new code), KVM is invoked to

out-graft the process’ execution to the security VM. Inside the security VM, the OmniUnpack

tool is running to keep track of page accesses by the process. Since the system calls invoked by

the process are also available for monitoring, OmniUnpack successfully detects the packing

behavior.

3.7 Reducing Kernel Attack Surface via Face-Change

This research also explores the paradigm of treating the guest OS as a “moving target” for better

protection against kernel-level (as well as user-level) attacks. Modern operating systems strive to

shrink the size of the trusted computing base (TCB) to ease code verification and minimize trust

assumptions. For a general-purpose OS like Linux, kernel minimization has already been

established as a practical approach to reducing attack surface. But for a general-purpose OS

supporting a variety of applications, whole-system profiling unnecessarily enlarges the kernel

attack surface of the system.

Figure 8: Overview of Face-Change where processes each have their own kernel code views

A key observation from this research is that kernel code executed under different application

contexts varies drastically. Profiling experiments show that two distinct applications may share

as little as 33.6% of their executed kernel code – thus system-wide kernel minimization would

over-approximate both applications’ kernel requirements. For example, the kernel functionality

needed by task manager top is to read statistics data from the memory-based proc file system and

write to the tty device. In sharp contrast, the Apache web server primarily requires network I/O

services from the kernel. If a system running top and Apache simultaneously is profiled, the

kernel’s networking code will be exposed to top simply because Apache is in the same VM.

Further, assume top is the target of a malicious attack, the compromised top may be implanted

with a parasite network server as a backdoor without violating the minimized kernel’s constraint.

To address the problems with whole-system-based kernel minimization, FACE-CHANGE is

developed, which is a virtualization-based system to support dynamic switching among multiple

minimized kernels, each for an individual application. The term kernel view refers to the in-

memory kernel code presented to an individual application. In conventional kernels, all

concurrently running user-level processes share the same kernel view containing the entire kernel

code section, which is referred to as a full kernel view. FACE-CHANGE aims to present each

process with a different, customized kernel view, which is prepared individually in advance by

profiling the application’s needs. Any unnecessary kernel code is eliminated to minimize the

attack surface accessible to this specific application. At runtime, FACE-CHANGE identifies the

current process context and dynamically switches to its customized kernel view.

Figure 9: Evaluation results showing FACE-CHANGE detecting both kernel and user-level

malware

Extensive experiments have been performed to evaluate the effectiveness of FACE-CHANGE

with 13 user-level malware (8 of them use online runtime infection and 5 use offline binary

infection) and 3 kernel-level rootkits. The results are presented in Figure 9.

3.8 Compiler Support for Kernel Rootkit Defense via Randomization

Finally, to complement the virtualization-based kernel protection techniques, a compiler-based

solution has been proposed that does not require virtualization support. Although this research

focuses on the virtualization-based approaches, a non-virtualized solution is helpful for

comparison and complement.

The vast majority of hosts on the Internet, including mobile clients, are running on one of three

major operating system families. Malicious operating system kernel software, such as the code

introduced by a kernel rootkit, is strongly dependent on the organization of the victim operating

system. Due to the lack of diversity of operating systems, attackers can craft a single kernel

exploit that has the potential to infect millions of hosts. If the underlying structure of vulnerable

operating system components has been changed, in an unpredictable manner, then attackers must

create many unique variations of their exploit to attack vulnerable systems en masse. If enough

variants of the vulnerable software exist, then mass exploitation is much more difficult to

achieve. Many forms of automatic software diversification have been explored and found to be

useful for preventing malware infection. Forrest et. al. make a strong case for software diversity

and describe a few possible techniques including: adding or removing nonfunctional code,

reordering code, and reordering memory layouts. The techniques in this research build on the

latter.

Two different ways are proposed to mutate an operating system kernel using memory layout

randomization to resist kernel-based attacks. A new method is introduced for randomizing the

stack layout of function arguments. Additionally, a previous technique for record layout

randomization is refined by introducing a static analysis technique for determining the

randomizability of a record. Prototypes of these techniques are developed using the plugin

architecture offered by GCC. To test the security benefits of the techniques, multiple Linux

kernels have been randomized using the new compiler plugins. The randomized kernels are then

attacked using multiple kernel rootkits. Experiments show that by strategically selecting just a

few components for randomization, the techniques prevent all kernel rootkits in the experiments.

4. Publications

[1] Dannie Stanley, Zhui Deng, Dongyan Xu, Rick Porter, Shane Snyder, “Guest-transparent

instruction authentication for self-patching kernels”, Proceedings of IEEE Conference on

Military Communications (MILCOM 2012), 2012.

[2] Junghwan Rhee, Ryan Riley, Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, "Data-Centric OS

Kernel Malware Characterization", IEEE Transactions on Information Forensics and Security

(TIFS), 9(1), 2014.

[3] Junghwan Rhee, Zhiqiang Lin, Dongyan Xu, "Characterizing Kernel Malware Behavior with

Kernel Data Access Patterns," Proceedings of the 6th ACM Symposium on Information,

Computer and Communications Security (ASIACCS 2011), 2011.

[4] Deepa Srinivasan, Xuxian Jiang, "Time-traveling Forensic Analysis of VM-based High-

interaction Honeypots," Proceedings of the 7
th

 International Conference on Security and Privacy

in Communication Networks (SecureComm 2011), 2011.

[5] Zhongshu Gu, Zhui Deng, Dongyan Xu, Xuxian Jiang, "Process Implanting: A New Active

Introspection Framework for Virtualization," Proceedings of the IEEE Symposium on Reliable

Distributed Systems (SRDS 2011), 2011.

[6] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, Dongyan Xu, "Process Out-Grafting: An

Efficient 'Out-of-VM' Approach for Fine-Grained Process Execution Monitoring," Proceedings

of the ACM Conference on Computer and Communications Security (CCS 2011), 2011.

[7] Zhongshu Gu, Brendan Saltaformaggio, Xiangyu Zhang, Dongyan Xu, "FACE-CHANGE:

Application-Driven Dynamic Kernel View Switching in a Virtual Machine," Proceedings of the

44th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2014),

2014.

[8] Dannie Stanley, Dongyan Xu, Eugene H. Spafford, “Improved Kernel Security Through

Memory Layout Randomization”, Proceedings of IEEE International Performance, Computing,

and Communications Conference (IPCCC 2013), 2013.

	FA9550-10-1-0099-SF298.pdf
	sf298.pdf

